

Generic Example for Calculating Household Income

Dr. Eberhard Krain, Sophie Grunze & Vera Morisse

Living Income CoP - Webinar

8th September 2015

Sector Programme Sustainability Governance of Global Value Chains Sustainable Cocoa Business Programme, Sector Network Rural Development (SNRD) Africa

SNRD

- 1 Introduction/Recap
- 2 Connecting Living Wage and Living Income
- 3 Example of Calculating Household Income
- 4 Conclusions
- 5 Annex (will not be presented)

Introduction: Recap Definition

The "Living income" is the net income of a household earned/generated under conditions of decent work, sufficient to enable all members of the household to afford a decent standard of living".

Elements of a decent standard of living include: food, water, housing, education, health care, transport, clothing, and other essential needs including provision for unexpected events.

(Living Income Practitioners' Workshop hosted by ISEAL & GIZ, Eschborn, February 2015)

Introduction: What do we need to know?

3) The gap

Generic example: calculating the household income

Two important yardsticks/benchmarks

- Living income (LI) benchmark should be compatible to living wage (LW) benchmark;
 - a. as common dominator a work time unit is proposed
 - b. This is compared with the actual income created by one work time unit; (see next slide D.3)
- 2. Available actual income per household member per time unit over a defined period: e.g. a year, month, week, day of a year; (see next slide D.4)

Why these two yardsticks?

- different household activities contribute differently to the household income
- A particular activity (work) may not be undertaken all year round, however, household members need income all the year round
- An outside company can only be made responsible for the pricing of the agr. commodity he/she is buying

Generic example: what is income (simplified)?

- A. Revenue (quantity x price)
- B. Costs (by cost categories)
 - Variable input costs: fertilizer, pesticides, etc.
 - Hired labour costs
 - Fixed costs (e.g. depreciation for tools, land rent)
- C. Household labour input (in monetary value / in working units)

Results:

- D1. Enterprise income = A B C (monetary value)
- D2. Household income = A B

D3. Household income per working unit, e.g. (A – B)/C (in working units)

D4. Household income per time unit; e.g. (A - B)/365 days per year

- 7 -

Generic example: calculating household income

(in total household income per year)

Categories in fictive currency units (CU)	Crop X	Livestock Y	Off-farm Z	Total, Household	Income of Activity Groups X Crops: 630, 750 CU Y Livestock: 320, 560 CU
A. Revenue	800	600,0	350	1750	Z Off-farm: 100, 280 CU
Input costs (seed, fertilizer)	20	0	40	60	HH: total 1050, <mark>1590</mark> CU
Hired labour costs	30	40	30	100	
B. Total cash costs (b)	50	40	70	160	Income of Activity Groups/per WD X Crops: 7,50 CU Y Livestock: 2,80 CU
C1 HH labour input in WD	100	200	150	450	Z Off-farm: 1,87 CU HH: total: 3.53 CU
C2 HH labour input in CU	120	240	180	540	Income of Activity Groups/per day
Total costs incl. HH labour	170	280	250	700	X Crops: 2,05 CU
D. Income D1 Enterprise income D1 = A – B – C2	630	320	100	1050	Y Livestock: 1,53 CU Z Off-farm: 0,77 CU HH: total: 4,36 CU
D2 HH income D2 = A – B	750	560	280	1590	
D3 HH income per WD	7,50	2,80	1,87	3,53	
D4 HH Income per day	2,05	1,53	0,77	4,36	

CU = currency unit

D2 (household income) is important for our purposes

WD = working day

D1 (enterprise income) is important if the farm is managed like an enterprise

- 8 -

Calculating household income, Case 1

Household income with adequate farm size

Categories in fictive currency units (CU)	Crop X	Livestock Y	Off-farm Z	Total, Household	<u>Ass</u> 6 H Ava
A. Revenue	800	600,0	350	1750	1
Input costs (seed, fertilizer)	20	0	40	60	1
Hired labour costs	30	40	30	100	1 (3 (
B. Total cash costs (b)	50	40	70	160	to H
C1 HH labour input in WD	100	200	150	450	Liv 3
C2 HH labour input in CU	120	240	180	540	5
Total costs incl. HH labour	170	280	250	700	C •
D. Income D1 Enterprise income D1 = A – B – C2	630	320	100	1050	<u>Co</u> - / t - I
D2 HH income D2 = A – B	750	560	280	1590	- 1 - 1
D3 HH income per WD	7,50	2,80	1,87	3,53	- I
D4 HH Income per day	2,05	1,53	0,77	4,36	a

Assumptions 6 HH members Available work force in farm: 1 husband = 270 WD 1 wife = 135 WD 1 elderly person = 45 WD 3 children = 0 WD total = 450 WD HH labour force fully employed

₋iving income benchmark 3 CU/day/6 persons

Conclusion

- Activities contribute differently to HH income
- Income/WD of X (crops) above living income benchmark
- Income for Y and Z below benchmark
- Income for total household still above benchmark

CU = currency unit WD = working day

Calculating household income, Case 2

Household income with inadequate farm size (half the size of case 1)

Categories in fictive currency units (CU)	Crop X	Livestock Y	Off-farm Z	Total, Household	<u>Assumptions</u> 6 HH members Available work force in farm:
A. Revenue	400	300,0	175	875	1 husband = 270 WD
Input costs (seed, fertilizer)	10	0	20	30	1 wife = 135 WD
Hired labour costs	15	20	15	50	1 elderly person = 45 WD 3 children = 0 WD
B. Total cash costs (b)	25	20	35	80	total 450 WD HH labor not fully employed
C1 HH labour input in WD	50	100	75	225	Living income benchmark 3 CU/day/6 persons
C2 HH labour input in currency	60	120	90	270	5 Corday/o persons
Total costs incl. HH labour	85	140	125	350	Conclusion
D. Income D1 Enterprise income D1 = A – B – C2	315	160	50	525	 D3: HH income per WD does not change D4: HH income is not sufficient
D2 HH income D2 = A – B	375	280	140	795	to sustain HH to a living income level - The problem here is no full
D3 HH income per WD	7,50	2,80	1,87	3,53	employment (e.g. small farm
D4 HH income per day	1,03	0,77	0,38	2,18	size)

CU = currency unit WD = working day

Further thoughts

- Now income per work unit can also be related to production
 - E.g. kg cocoa produced per work unit
 - E.g. ltr of milk produced per work unit
 - → And compared with acutal prices
 - Thus further benchmarks can be established such as necessary prices per production units

- 11 -

Conclusions

- Different activities in a household contribute differently to the total household income
- Income per Work Unit is proposed as a bridge (<u>common</u> <u>denominator</u>) between Living Wage and Living Income
- Under <u>partial employment condition</u>, or partial contribution of the target activity to total income, the income from the target activity should proportionally contribute to a living income

<u>Contact</u> Dr. Eberhard Krain. <u>eberhard.krain@giz.de;</u> Sophie Grünze, <u>sophie.grunze@giz.de</u> Vera Morisse, <u>vera.morisse@giz.de</u>

Thank you!

Annex: Case from Ghana Targeting Cocoa

The following example from Ghana shall show the different contributions from different household activities (working outside household; groundnuts, maize, cassava and cocoa under two different scenarios of housheold and farm size.

However, calculations were made against one yardstick only, i.e. income per time unit (per person per day of a year) against World Bank poverty line; and not yet income per work unit.

Trying to gain some insight along a real example from cocoa in Ghana

- Data were taken
 - from the Sustainable Cocoa Business Program West Africa
 - World Cocoa Foundation (WCF)
 - "Harvard study"
- Were calculated and interpreted by M.-T. Findeisen (an intern) in Ghana in 1st Quarter 2013 under guidance of 2 GIZ projects involved
- However, calculations were only made against one yardstick, i.e. income per time unit (per person per day), and not yet income per work unit

International poverty lines as reference

HH Income of diversified cocoa model farms (per person per day)

HH Income of diversified cocoa model farms (per person per day)

Proportional income from area under cocoa (per person per day)

Price increase needed to reach poverty line

Scenario 1 (with potential) 3.3 HH members 1.98 ha cocoa plot size <u>Scenario 2 (representative)</u> 2.75 HH members 1.1 ha cocoa plot size

(constructed on WCF Study & SCB Programme data)

(constructed on Harvard Study & SCB Programme data)

Productivity increase needed to reach poverty line

Scenario 1 (with potential) 3.3 HH members 1.98 ha cocoa plot size <u>Scenario 2 (representative)</u> 2.75 HH members 1.1 ha cocoa plot size

(constructed on WCF Study & SCB Programme data)

(constructed on Harvard Study & SCB Programme data)